Thursday, October 31, 2019

Sexual Harassment, Arbitrators and Vacated Awards Essay

Sexual Harassment, Arbitrators and Vacated Awards - Essay Example Such awards reinstating the accused are likely to be vacated if a company has an express sexual harassment policy or on the basis of legal and social norms. In Stroehmann Bakeries, Inc. v. Local 7761, the accused was discharged by Stroehmann for violating the rule prohibiting immoral conduct after the employee of a customer alleged that he had touched her breast, pushed himself against her and made sexually explicit remarks. The arbitrator ruled that the company's investigation into this incident was insufficient. The 3rd Circuit Court vacated the award, stating that "[t]here is a well-defined and dominant public policy concerning sexual harassment in the workplace which can be ascertained by reference to law and legal precedent." The court also pointed out that the arbitration award would have affected the employer's ability to prevent sexual harassment2. Although the courts upheld termination of employment where sexual harassment was claimed, these decisions do not require employers to terminate an accused harasser in all instances. The employer must determine whether the harassment occurred and then its response must be calculated to prevent further harassment, given the particular facts and circumstances at the time. If the termination results in a grievance, the arbitrator has to determine whether the termination is supported by just cause. Part of these considerations is to determine the relief, if any, in a case. The public policy exception to enforcement of labor arbitration awards arises when an award reinstates a previously discharged individual. The usual standard for discipline and discharge in labor cases is just cause, which does not have a precise meaning and the arbitrator has to decide on a case to case basis. Therefore, it seems inappropriate for a court to set aside an arbitral decision reinstating a grievant merely on the grounds that it does not agree with the arbitrator's assessment that just cause was lacking. On the other hand, the Supreme Court has recognized the public policy exception; hence courts have a right to apply it under appropriate circumstances. Although the Supreme Court has not specified as to what kind of award violates public policy, it has said that public policy is to be ascertained by reference to laws and legal precedents. Further, it has acknowledged that the public policy exception is narrow and therefore for an order to be vacated on these grounds, the award must violate a specific law or court decision and the occurrence of such a violation is to be determined only by the courts. Clearly, arbitrators possess no independent powers beyond what the parties confer on them through their contracts and the Courts in general, have allowed arbitrators to make crucial inferences regarding the possible future conduct of grievants when they determine their awards. The court's assessment of whether public policy was violated by an arbitration award has at times been based on these inferences. The Labor law policy favors disputes going to arbitration and the Collective Bargaining Agreement or CBAs usually authorize arbitrators to reinstate employees. The courts, in general, have held that a public policy collision occurs only if positive law explicitly prevents reinstatement. However, the Supreme Cour

Tuesday, October 29, 2019

Blood pressure Essay Example for Free

Blood pressure Essay Blood pressure (BP), sometimes referred to as arterial blood pressure, is the pressureexerted by circulating blood upon the walls of blood vessels, and is one of the principal vital signs. When used without further specification, blood pressure usually refers to thearterial pressure of the systemic circulation. During each heartbeat, blood pressure varies between a maximum (systolic) and a minimum (diastolic) pressure.[1] The blood pressure in the circulation is principally due to the pumping action of the heart.[2] Differences in mean blood pressure are responsible for blood flow from one location to another in the circulation. The rate of mean blood flow depends on the resistance to flow presented by the blood vessels. Mean blood pressure decreases as the circulating blood moves away from the heart through arteries and capillaries due to viscous losses of energy. Mean blood pressure drops over the whole circulation, although most of the fall occurs along the small arteries and arterioles.[3] Gravity affects blood pressure via hydrostatic forces (e.g., during standing) and valves in veins, breathing, and pumping from contraction of skeletal muscles also influence blood pressure in veins.[2] The measurement blood pressure without further specification usually refers to the systemic arterial pressure measured at a persons upper arm and is a measure of the pressure in the brachial artery, major artery in the upper arm. A person’s blood pressure is usually expressed in terms of the systolic pressure over diastolic pressure and is measured in millimetres of mercury (mmHg), for example 120/80. The table on the right shows the classification of blood pressure adopted by the American Heart Association for adults who are 18 years and older.[4] It assumes the values are a result of averaging blood pressure readings measured at two or more visits to the doctor.[6][7] In the UK, blood pressures are usually categorised into three groups: low (90/60 or lower), high (140/90 or higher), and normal (values above 90/60 and below 130/80).[8][9] Normal range of blood pressure While average values for arterial pressure could be computed for any given population, there is often a large variation from person to person; arterial pressure also varies in individuals from moment to moment. Additionally, the average of any given population may have a questionable correlation with its general health; thus the relevance of such average values is equally questionable. However, in a study of 100 human subjects with no known history of hypertension, an average blood pressure of 112/64 mmHg was found,[10] which are currently classified as desirable or normal values. Normal values fluctuate through the 24-hour cycle, with highest readings in the afternoons and lowest readings at night.[11][12] Various factors, such as age and sex influence average values, influence a persons average blood pressure and variations. In children, the normal ranges are lower than for adults and depend on height.[13] As adults age, systolic pressure tends to rise and diastolic tends to fall.[14] In the elderly, blood pressure tends to be above the normal adult range,[15] largely because of reduced flexibility of the arteries. Also, an individuals blood pressure varies with exercise, emotional reactions, sleep, digestion and time of day. Differences between left and right arm blood pressure measurements tend to be random and average to nearly zero if enough measurements are taken. However, in a small percentage of cases there is a consistent difference greater than 10 mmHg which may need further investigation, e.g. for obstructive arterial disease.[16][17] The risk of cardiovascular disease increases progressively above 115/75 mmHg.[18] In the past, hypertension was only diagnosed if secondary signs of high arterial pressure were present, along with a prolonged high systolic pressure reading over several visits. Regarding hypotension, in practice blood pressure is considered too low only if noticeable symptoms are present.[5] Clinical trials demonstrate that people who maintain arterial pressures at the low end of these pressure ranges have much better long term cardiovascular health. The principal medical debate concerns the aggressiveness and relative value of methods used to lower pressures into this range for those who do not maintain such pressure on their own. Elevations, more commonly seen in older people, though often considered normal, are associated with increased morbidity and mortality. Physiology There are many physical factors that influence arterial pressure. Each of these may in turn be influenced by physiological factors, such as diet, exercise, disease, drugs or alcohol, stress, obesity, and so-forth.[20] Some physical factors are: †¢ Volume of fluid or blood volume, the amount of blood that is present in the body. The more blood present in the body, the higher the rate of blood return to the heart and the resulting cardiac output. There is some relationship between dietary salt intake and increased blood volume, potentially resulting in higher arterial pressure, though this varies with the individual and is highly dependent on autonomic nervous system response and the renin-angiotensin system.[21][22][23] †¢ Resistance. In the circulatory system, this is the resistance of the blood vessels. The higher the resistance, the higher the arterial pressure upstream from the resistance to blood flow. Resistance is related to vessel radius (the larger the radius, the lower the resistance), vessel length (the longer the vessel, the higher the resistance), blood viscosity, as well as the smoothness of the blood vessel walls. Smoothness is reduced by the build up of fatty deposits on the arterial walls. Substances called vasoconstrictors can reduce the size of blood vessels, thereby increasing blood pressure. Vasodilators (such as nitroglycerin) increase the size of blood vessels, thereby decreasing arterial pressure. Resistance, and its relation to volumetric flow rate (Q) and pressure difference between the two ends of a vessel are described by Poiseuilles Law. †¢ Viscosity, or thickness of the fluid. If the blood gets thicker, the result is an increase in arterial pressure. Certain medical conditionscan change the viscosity of the blood. For instance, anemia (low red blood cell concentration), reduces viscosity, whereas increased red blood cell concentration increases viscosity. It had been thought that aspirin and related blood thinner drugs decreased the viscosity of blood, but instead studies found[24] that they act by reducing the tendency of the blood to clot. In practice, each individuals autonomic nervous system responds to and regulates all these interacting factors so that, although the above issues are important, the actual arterial pressure response of a given individual varies widely because of both split-second and slow-moving responses of the nervous system and end organs. These responses are very effective in changing the variables and resulting blood pressure from moment to moment. Moreover, blood pressure is the result of cardiac output increased by peripheral resistance: blood pressure = cardiac output Xperipheral resistance. As a result, an abnormal change in blood pressure is often an indication of a problem affecting the hearts output, the blood vessels resistance, or both. Thus, knowing the patients blood pressure is critical to assess any pathology related to output and resistance. Mean arterial pressure The mean arterial pressure (MAP) is the average over a cardiac cycle and is determined by the cardiac output (CO), systemic vascular resistance (SVR), and central venous pressure (CVP),[25] Curve of the arterial pressure during one cardiac cycle The up and down fluctuation of the arterial pressure results from the pulsatile nature of thecardiac output, i.e. the heartbeat. The pulse pressure is determined by the interaction of thestroke volume of the heart, compliance (ability to expand) of the aorta, and the resistance to flow in the arterial tree. By expanding under pressure, the aorta absorbs some of the force of the blood surge from the heart during a heartbeat. In this way, the pulse pressure is reduced from what it would be if the aorta wasnt compliant.[26] The loss of arterial compliance that occurs with aging explains the elevated pulse pressures found in elderly patients. The pulse pressure can be simply calculated from the difference of the measured systolic and diastolic pressures,[26] Arm–leg gradient The arm–leg (blood pressure) gradient is the difference between the blood pressure measured in the arms and that measured in the legs. It is normally less than 10 mmHg,[27] but may be increased in e.g. coarctation of the aorta.[27] Vascular resistance The larger arteries, including all large enough to see without magnification, are conduits with low vascular resistance (assuming no advanced atherosclerotic changes) with high flow rates that generate only small drops in pressure. The smaller arteries and arterioles have higher resistance, and confer the main drop in blood pressure along the circulatory system. Vascular pressure wave Modern physiology developed the concept of the vascular pressure wave (VPW). This wave is created by the heart during the systoleand originates in the ascending aorta. Much faster than the stream of blood itself, it is then transported through the vessel walls to the peripheral arteries. There the pressure wave can be palpated as the peripheral pulse. As the wave is reflected at the peripheral veins, it runs back in a centripetal fashion. When the reflected wave meets the next outbound pressure wave, the pressure inside the vessel rises higher than the pressure in the aorta. This concept explains why the arterial pressure inside the peripheral arteries of the legs and arms is higher than the arterial pressure in the aorta,[28][29][30] and in turn for the higher pressures seen at the ankle compared to the arm with normal ankle brachial pressure index values. Regulation The endogenous regulation of arterial pressure is not completely understood, but the following mechanisms of regulating arterial pressure have been well-characterized: †¢ Baroreceptor reflex: Baroreceptors in the high pressure receptor zones detect changes in arterial pressure. These baroreceptors send signals ultimately to the medulla of the brain stem, specifically to the Rostral ventrolateral medulla (RVLM). The medulla, by way of the autonomic nervous system, adjusts the mean arterial pressure by altering both the force and speed of the hearts contractions, as well as the total peripheral resistance. The most important arterial baroreceptors are located in the left and rightcarotid sinuses and in the aortic arch.[31] †¢ Renin-angiotensin system (RAS): This system is generally known for its long-term adjustment of arterial pressure. This system allows the kidney to compensate for loss in blood volume or drops in arterial pressure by activating an endogenous vasoconstrictorknown as angiotensin II. †¢ Aldosterone release: This steroid hormone is released from the adrenal cortex in response to angiotensin II or high serum potassiumlevels. Aldosterone stimulates sodium retention and potassium excretion by the kidneys. Since sodium is the main ion that determines the amount of fluid in the blood vessels by osmosis, aldosterone will increase fluid retention, and indirectly, arterial pressure. †¢ Baroreceptors in low pressure receptor zones (mainly in the venae cavae and the pulmonary veins, and in the atria) result in feedback by regulating the secretion of antidiuretic hormone (ADH/Vasopressin), renin and aldosterone. The resultant increase inblood volume results an increased cardiac output by the Frank–Starling law of the heart, in turn increasing arterial blood pressure. These different mechanisms are not necessarily independent of each other, as indicated by the link between the RAS and aldosterone release. Currently, the RAS is targeted pharmacologically by ACE inhibitors and angiotensin II receptor antagonists. The aldosterone system is directly targeted by spironolactone, an aldosterone antagonist. The fluid retention may be targeted by diuretics; the antihypertensive effect of diuretics is due to its effect on blood volume. Generally, the baroreceptor reflex is not targeted in hypertensionbecause if blocked, individuals may suffer from orthostatic hypotension and fainting. Measurement A medical student checking blood pressure using a sphygmomanometer and stethoscope. Arterial pressure is most commonly measured via a sphygmomanometer, which historically used the height of a column of mercury to reflect the circulating pressure.[32] Blood pressure values are generally reported in millimetres of mercury (mmHg), though aneroid and electronic devices do not use mercury. For each heartbeat, blood pressure varies between systolic and diastolic pressures. Systolic pressure is peak pressure in the arteries, which occurs near the end of the cardiac cyclewhen the ventricles are contracting. Diastolic pressure is minimum pressure in the arteries, which occurs near the beginning of the cardiac cycle when the ventricles are filled with blood. An example of normal measured values for a resting, healthy adult human is 120 mmHgsystolic and 80 mmHg diastolic (written as 120/80 mmHg, and spoken [in the US and UK] as one-twenty over eighty). Systolic and diastolic arterial blood pressures are not static but undergo natural variations from one heartbeat to another and throughout the day (in a circadian rhythm). They also change in response to stress, nutritional factors, drugs, disease, exercise, and momentarily from standing up. Sometimes the variations are large. Hypertension refers to arterial pressure being abnormally high, as opposed to hypotension, when it is abnormally low. Along with body temperature, respiratory rate, and pulse rate, blood pressure is one of the four main vital signs routinely monitored by medical professionals and healthcare providers.[33] Measuring pressure invasively, by penetrating the arterial wall to take the measurement, is much less common and usually restricted to a hospital setting. Noninvasive The noninvasive auscultatory and oscillometric measurements are simpler and quicker than invasive measurements, require less expertise, have virtually no complications, are less unpleasant and less painful for the patient. However, noninvasive methods may yield somewhat lower accuracy and small systematic differences in numerical results. Noninvasive measurement methods are more commonly used for routine examinations and monitoring. [edit]Palpation A minimum systolic value can be roughly estimated by palpation, most often used in emergency situations, but should be used with caution.[34] It has been estimated that, using 50% percentiles, carotid, femoral and radial pulses are present in patients with a systolic blood pressure 70 mmHg, carotid and femoral pulses alone in patients with systolic blood pressure of 50 mmHg, and only a carotid pulse in patients with a systolic blood pressure of 40 mmHg.[34] A more accurate value of systolic blood pressure can be obtained with a sphygmomanometer and palpating the radial pulse.[35] The diastolic blood pressure cannot be estimated by this method.[36] The American Heart Association recommends that palpation be used to get an estimate before using the auscultatory method. Auscultatory Auscultatory method aneroid sphygmomanometer with stethoscope Mercury manometer The auscultatory method (from the Latin word for listening) uses a stethoscope and asphygmomanometer. This comprises an inflatable (Riva-Rocci) cuff placed around the upperarm at roughly the same vertical height as the heart, attached to a mercury or aneroidmanometer. The mercury manometer, considered the gold standard, measures the height of a column of mercury, giving an absolute result without need for calibration and, consequently, not subject to the errors and drift of calibration which affect other methods. The use of mercury manometers is often required in clinical trials and for the clinical measurement of hypertension in high-risk patients, such as pregnant women. A cuff of appropriate size is fitted smoothly and snugly, then inflated manually by repeatedly squeezing a rubber bulb until the artery is completely occluded. Listening with the stethoscope to the brachial artery at the elbow, the examiner slowly releases the pressure in the cuff. When blood just starts to flow in the artery, the turbulent flow creates a whooshing or pounding (first Korotkoff sound). The pressure at which this sound is first heard is the systolic blood pressure. The cuff pressure is further released until no sound can be heard (fifth Korotkoff sound), at the diastolic arterial pressure. The auscultatory method is the predominant method of clinical measurement.[37] Oscillometric The oscillometric method was first demonstrated in 1876 and involves the observation of oscillations in the sphygmomanometer cuff pressure[38] which are caused by the oscillations of blood flow, i.e., the pulse.[39] The electronic version of this method is sometimes used in long-term measurements and general practice. It uses a sphygmomanometer cuff, like the auscultatory method, but with an electronic pressure sensor (transducer) to observe cuff pressure oscillations, electronics to automatically interpret them, and automatic inflation and deflation of the cuff. The pressure sensor should be calibrated periodically to maintain accuracy. Oscillometric measurement requires less skill than the auscultatory technique and may be suitable for use by untrained staff and for automated patient home monitoring. The cuff is inflated to a pressure initially in excess of the systolic arterial pressure and then reduced to below diastolic pressure over a period of about 30 seconds. When blood flow is nil (cuff pressure exceeding systolic pressure) or unimpeded (cuff pressure below diastolic pressure), cuff pressure will be essentially constant. It is essential that the cuff size is correct: undersized cuffs may yield too high a pressure; oversized cuffs yield too low a pressure. When blood flow is present, but restricted, the cuff pressure, which is monitored by the pressure sensor, will vary periodically in synchrony with the cyclic expansion and contraction of the brachial artery, i.e., it will oscillate. The values of systolic and diastolic pressure are computed, not actually measured from the raw data, using an algorithm; the computed results are displayed. Oscillometric monitors may produce inaccurate readings in patients with heart and circulation problems, which include arterial sclerosis, arrhythmia, preeclampsia, pulsus alternans, and pulsus paradoxus. In practice the different methods do not give identical results; an algorithm and experimentally obtained coefficients are used to adjust the oscillometric results to give readings which match the auscultatory results as well as possible. Some equipment uses computer-aided analysis of the instantaneous arterial pressure waveform to determine the systolic, mean, and diastolic points. Since many oscillometric devices have not been validated, caution must be given as most are not suitable in clinical and acute care settings. The term NIBP, for non-invasive blood pressure, is often used to describe oscillometric monitoring equipment. Continuous noninvasive techniques (CNAP) Continuous Noninvasive Arterial Pressure (CNAP) is the method of measuring arterial blood pressure in real-time without any interruptions and without cannulating the human body. CNAP combines the advantages of the following two clinical â€Å"gold standards†: it measures blood pressure continuously in real-time like the invasive arterial catheter system and it is noninvasive like the standard upper arm sphygmomanometer. Latest developments in this field show promising results in terms of accuracy, ease of use and clinical acceptance. Non-occlusive techniques: the Pulse Wave Velocity (PWV) principle Since the 90s a novel family of techniques based on the so-called Pulse wave velocity (PWV) principle have been developed. These techniques rely on the fact that the velocity at which an arterial pressure pulse travels along the arterial tree depends, among others, on the underlying blood pressure.[40] Accordingly, after a calibration maneuver, these techniques provide indirect estimates of blood pressure by translating PWV values into blood pressure values.[41] The main advantage of these techniques is that it is possible to measure PWV values of a subject continuously (beat-by-beat), without medical supervision, and without the need of inflating brachial cuffs. PWV-based techniques are still in the research domain and are not adapted to clinical settings. White-coat hypertension For some patients, blood pressure measurements taken in a doctors office may not correctly characterize their typical blood pressure.[42] In up to 25% of patients, the office measurement is higher than their typical blood pressure. This type of error is calledwhite-coat hypertension (WCH) and can result from anxiety related to an examination by a health care professional.[43] The misdiagnosis of hypertension for these patients can result in needless and possibly harmful medication. WCH can be reduced (but not eliminated) with automated blood pressure measurements over 15 to 20 minutes in a quiet part of the office or clinic.[44] Debate continues regarding the significance of this effect.[citation needed] Some reactive patients will react to many other stimuli throughout their daily lives and require treatment. In some cases a lower blood pressure reading occurs at the doctors office.[45] Home monitoring Ambulatory blood pressure devices that take readings every half hour throughout the day and night have been used for identifying and mitigating measurement problems like white-coat hypertension. Except for sleep, home monitoring could be used for these purposes instead of ambulatory blood pressure monitoring.[46] Home monitoring may be used to improve hypertension management and to monitor the effects of lifestyle changes and medication related to blood pressure.[6] Compared to ambulatory blood pressure measurements, home monitoring has been found to be an effective and lower cost alternative,[46][47][48] but ambulatory monitoring is more accurate than both clinic and home monitoring in diagnosing hypertension. Ambulatory monitoring is recommended for most patients before the start of antihypertensive drugs.[49] Aside from the white-coat effect, blood pressure readings outside of a clinical setting are usually slightly lower in the majority of people. The studies that looked into the risks from hypertension and the benefits of lowering blood pressure in affected patients were based on readings in a clinical environment. When measuring blood pressure, an accurate reading requires that one not drink coffee, smoke cigarettes, or engage in strenuous exercise for 30 minutes before taking the reading. A full bladder may have a small effect on blood pressure readings; if the urge to urinate arises, one should do so before the reading. For 5 minutes before the reading, one should sit upright in a chair with ones feet flat on the floor and with limbs uncrossed. The blood pressure cuff should always be against bare skin, as readings taken over a shirt sleeve are less accurate. During the reading, the arm that is used should be relaxed and kept at heart level, for example by resting it on a table.[50] Since blood pressure varies throughout the day, measurements intended to monitor changes over longer time frames should be taken at the same time of day to ensure that the readings are comparable. Suitable times are: †¢ immediately after awakening (before washing/dressing and taking breakfast/drink), while the body is still resting, †¢ immediately after finishing work. Automatic self-contained blood pressure monitors are available at reasonable prices, some of which are capable of Korotkoffs measurement in addition to oscillometric methods, enabling irregular heartbeat patients to accurately measure their blood pressure at home. Invasive Arterial blood pressure (BP) is most accurately measured invasively through an arterial line. Invasive arterial pressure measurement with intravascular cannulae involves direct measurement of arterial pressure by placing a cannula needle in an artery (usually radial, femoral,dorsalis pedis or brachial). The cannula must be connected to a sterile, fluid-filled system, which is connected to an electronic pressure transducer. The advantage of this system is that pressure is constantly monitored beat-by-beat, and a waveform (a graph of pressure against time) can be displayed. This invasive technique is regularly employed in human and veterinary intensive care medicine, anesthesiology, and for research purposes. Cannulation for invasive vascular pressure monitoring is infrequently associated with complications such as thrombosis, infection, andbleeding. Patients with invasive arterial monitoring require very close supervision, as there is a danger of severe bleeding if the line becomes disconnected. It is generally reserved for patients where rapid variations in arterial pressure are anticipated. Invasive vascular pressure monitors are pressure monitoring systems designed to acquire pressure information for display and processing. There are a variety of invasive vascular pressure monitors for trauma, critical care, and operating room applications. These include single pressure, dual pressure, and multi-parameter (i.e. pressure / temperature). The monitors can be used for measurement and follow-up of arterial, central venous, pulmonary arterial, left atrial, right atrial, femoral arterial, umbilical venous, umbilical arterial, and intracranial pressures. Fetal blood pressure Further information: Fetal circulation#Blood pressure In pregnancy, it is the fetal heart and not the mothers heart that builds up the fetal blood pressure to drive its blood through the fetal circulation. The blood pressure in the fetal aorta is approximately 30 mmHg at 20 weeks of gestation, and increases to approximately 45 mmHg at 40 weeks of gestation.[51] The average blood pressure for full-term infants: Systolic 65–95 mm Hg Diastolic 30–60 mm Hg[52] Blood pressure is the measurement of force that is applied to the walls of the blood vessels as the heart pumps blood throughout the body.[53] The human circulatory system is 400,000 miles long, and the magnitude of blood pressure is not uniform in all the blood vessels in the human body. The blood pressure is determined by the diameter, flexibility and the amount of blood being pumped through the blood vessel.[53] Blood pressure is also affected by other factors including exercise, stress level, diet and sleep. The average normal blood pressure in the brachial artery, which is the next direct artery from the aorta after the subclavian artery, is 120mmHg/80mmHg. Blood pressure readings are measured in millimeters of mercury (mmHg) using sphygmomanometer. Two pressures are measured and recorded namely as systolic and diastolic pressures. Systolic pressure reading is the first reading, which represents the maximum exerted pressure on the vessels when the heart contracts, while the diastolic pressure, the second reading, represents the minimum pressure in the vessels when the heart relaxes.[54] Other major arteries have similar levels of blood pressure recordings indicating very low disparities among major arteries. The innominate artery, the average reading is 110/70mmHg, the right subclavian artery averages 120/80 and the abdominal aorta is 110/70mmHg.[55] The relatively uniform pressure in the arteries indicate that these blood vessels act as a pressure reservoir for fluids that are transported within them. Pressure drops gradually as blood flows from the major arteries, through the arterioles, the capillaries until blood is pushed up back into the heart via the venules, the veins through the vena cava with the help of the muscles. At any given pressure drop, the flow rate is determined by the resistance to the blood flow. In the arteries, with the absence of diseases, there is very little or no resistance to blood. The vessel diameter is the most principal determinant to control resistance. Compared to other smaller vessels in the body, the artery has a much bigger diameter (4mm), therefore the resistance is low.[55] In addition, flow rate (Q) is also the product of the cross-sectional area of the vessel and the average velocity (Q = AV). Flow rate is directly proportional to the pressure drop in a tube or in this case a vessel. ∆P ÃŽ ± Q. The relationship is further described by Poisseulle’s equation ∆P = 8 µlQ/Ï€r4.[56] As evident in the Poisseulle’s equation, although flow rate is proportional to the pressure drop, there are other factors of blood vessels that contribute towards the difference in pressure drop in bifurcations of blood vessels. These include viscosity, length of the vessel, and radius of the vessel. Factors that determine the flow’s resistance as described by Poiseuille’s relationship: †¢ ∆P: pressure drop/gradient †¢  µ: viscosity †¢ l: length of tube. In the case of vessels with infinitely long lengths, l is replaced with diameter of the vessel. †¢ Q: flow rate of the blood in the vessel †¢ r: radius of the vessel Assuming steady, laminar flow in the vessel, the blood vessels behavior is similar to that of a pipe. For instance if p1 and p2 are pressures are at the ends of the tube, the pressure drop/gradient is:[57] In the arterioles blood pressure is lower than in the major arteries. This is due to bifurcations, which cause a drop in pressure. The more bifurcations, the higher the total cross-sectional area, therefore the pressure across the surface drops. This is why the arterioles have the highest pressure-drop. The pressure drop of the arterioles is the product of flow rate and resistance: ∆P=Q xresistance. The high resistance observed in the arterioles, which factor largely in the ∆P is a result of a smaller radius of about 30  µm.[58] The smaller the radius of a tube, the larger the resistance to fluid flow. Immediately following the arterioles are the capillaries. Following the logic obvserved in the arterioles, we expect the blood pressure to be lower in the capillaries compared to the arterioles. Since pressure is a function of force per unit area, (P = F/A), the larger the surface area, the lesser the pressure when an external force acts on it. Though the radii of the capillaries are very small, the network of capillaries have the largest surface area in the vascular network. They are known to have the largest surface area (485mm) in the human vascular network. The larger the total cross-sectional area, the lower the mean velocity as well as the pressure.[55] Reynold’s number also affects the blood flow in capillaries. Due to its smaller radius and lowest velocity compared to other vessels, the Reynold’s number at the capillaries is very low, resulting in laminar instead of turbulent flow.[59] The Reynold’s number (denoted NR or Re) is a relationship that helps determine the behavior of a fluid in a tube, in this case blood in the vessel. The equation for this dimensionless relationship is written as:[56] †¢ Ï : density of the blood †¢ v: mean velocity of the blood †¢ L: characteristic dimension of the vessel, in this case diameter †¢ ÃŽ ¼: viscosity of blood The Reynold’s number is directly proportional to the velocity and diameter of the tube. Note that NR is directly proportional to the mean velocity as well as the diameter. A Reynold’s number of less than 2300 is laminar fluid flow, which is characterized by constant flow motion, whereas a value of over 4000, is represented as turbulent flow. Turbulent flow is characterized as chaotic and irregular flow.[56] Disorders Disregulation disorders of blood pressure control include high blood pressure, blood pressure that is too low, and blood pressure that shows excessive or maladaptive fluctuation. High Main article: Hypertension Overview of main complications of persistent high blood pressure. Arterial hypertension can be an indicator of other problems and may have long-term adverse effects. Sometimes it can be an acute problem, for examplehypertensive emergency. All levels of arterial pressure put mechanical stress on the arterial walls. Higher pressures increase heart workload and progression of unhealthy tissue growth (atheroma) that develops within the walls of arteries. The higher the pressure, the more stress that is present and the more atheroma tend to progress and the heart muscle tends to thicken, enlarge and become weaker over time. Persistent hypertension is one of the risk factors for strokes, heart attacks,heart failure and arterial aneurysms, and is the leading cause of chronic renal failure. Even moderate elevation of arterial pressure leads to shortened life expectancy. At severely high pressures, mean arterial pressures 50% or more above average, a person can expect to live no more than a few years unless appropriately treated.[60] In the past, most attention was paid to diastolic pressure; but nowadays it is recognised that both high systolic pressure and high pulse pressure (the numerical difference between systolic and diastolic pressures) are also risk factors. In some cases, it appears that a decrease in excessive diastolic pressure can actually increase risk, due probably to the increased difference between systolic and diastolic pressures (see the article on pulse pressure). If systolic blood pressure is elevated (140) with a normal diastolic blood pressure (

Sunday, October 27, 2019

Study Of Blue Eye Technology

Study Of Blue Eye Technology Blue eye is the technology to make computers sense and understand human behavior and feelings and react in the proper ways. The blue eye technology aims at creating computational machines that have perceptual and sensory ability like those of human beings. It uses non-obtrusive sensing method, employing the most modern video cameras and microphones to identify the users actions through the use of imparted sensory abilities. The machine can understand what a user wants, where he is looking at, and even realize his physical or emotional states. This paper outlines the system over view, design features besides hardware part. The concept of the technology is the system recognizes through its various modules the basic emotions and feelings evinced by the user. This paper brings out the features of this technology, the various methods of giving the inputs to the system, design challenges and the emerging trends. Application of this technology in areas like automobile, surveillance system etc. is also dealt with. THE TERM BLUE EYE: BLUE in the term stands for Bluetooth, which enables reliable wireless communication. EYE, because the eye movement enables us to obtain a lot of interesting and important information. BASIC IDEA: In general, the blue eye technology aims at : creating interactive computer. computer acts as partner (and friend) to the user. realizes his physical or emotional states. gives computer human power. provide technical means for monitoring and recording operator physiological conditions Design smarter devices . Create devices with emotional intelligence . Create computational devices with perceptual abilities. BLUE EYE TECHNOLOGY: The complex solution for human-operator monitoring: Visual attention monitoring Physiological condition Operators position detection Wireless data acquisition using Bluetooth Real time user defined alarm triggering Recorded data playback Gesture recognition, Facial recognition, Eye tracking, Speech recognition, Doesnt predict nor interfere with operators thoughts Cannot force directly the operator to work SYSTEM OVERVIEW: Blue eye system provides technical means for monitoring and recording the operators basic physiological parameters. The most important parameter is saccadic activity ( Saccade is a rapid eye jump to a new location assigned by the conscious attention process), which enables the system to monitor the status of the operators visual attention along with head acceleration, which accompanies large displacement of the visual axis (saccades larger than 15 degrees). Complex industrial environment can create a danger of exposing the operator to toxic substances, which can affect his cardiac, circulatory and pulmonary systems. Thus, on the grounds of lethysmographic signal taken from the forehead skin surface, the system computes heart beat rate and blood oxygenation. The blue eye system checks above parameters against abnormal (e.g. a low level of blood oxygenation or a high pulse rate) or undesirable (e.g. a longer period of lowered visual attention) values and triggers user-defined alarms wh en necessary. Quite often in an emergency situation operators speak to themselves expressing their surprise or stating verbally the problem. Therefore, the operators voice, physiological parameters and an overall view of the operating room are recorded. This helps to reconstruct the course of operators work and provides data for long-term analysis. This system consists of a mobile measuring device and a central analytical system. The mobile device is integrated with Bluetooth module providing wireless interface between sensors worn by the operator and the central unit. ID cards assigned to each of the operators and adequate user profiles on the central unit side provide necessary data personalization so different people can use a single mobile device. DESIGN FEATURES: It has a personal area network for linking all the operators and the supervising system. It has two major units DAU (data acquisition unit ) CSU (central system unit ) The basic block diagram is shown below: DATA ACQUISITION UNIT: The DAU consists of the following components ATMEL 8952 microcontroller BLUE TOOTH MODULE supports synchronous voice data transmission PCM CODEC -used to transmit operators voice and central system sound feedback UART -communication between bluetooth module and microcontroller (115200 bps) MAX232 -level shifter ALPHAUNUMERIC LCD display LED indicators ID CARD interface In creating the hardware part of the DAU a development board is built, which enables the operator to mount, connect and test various peripheral devices cooperating with the microcontroller. During the implementation of the DAU a piece of software is needed to establish and test Bluetooth connections. Therefore a tool called BlueDentist is created. The tool provides support for controlling the currently connected Bluetooth device. Its functions are: local device management (resetting, reading local BD_ADDR, putting in Inquiry/Page and Inquiry/Page scan modes, reading the list of locally supported features and setting UART speed) connection management (receiving and displaying Inquiry scan results, establishing ACL links, adding SCO connections, performing link authorization procedure, sending test data packets and disconnecting). To test the possibilities and performance of the remaining parts such as computer, camera and database software, BlueCapture is created. The tool supports capturing video data from various sources (USB web-cam, industrial camera) and storing the data in the MS SQL Server database. Additionally, the application performs sound recording. After filtering and removing insignificant fragments (i.e. silence) the audio data is stored in the database. Finally, the program plays the recorded audiovisual stream. The software is used to measure database system performance and to optimize some of the SQL queries (e.g. replacing of correlated SQL queries with cursor operations). Also a simple tool for recording Jazz Multisensor measurements is created. The program reads the data using a parallel port and writes it to a file. To program the operators personal ID card we use a standard parallel port, as the EPROMs and the port are both TTL-compliant. A simple dialog-based application helps to accomplish the task. DAU FEATURES: The data acquisition unit has the following features. Lightweight Runs on batteries low power consumption Easy to use does not disturb the operator working ID cards for operator authorization Voice transmission using hardware PCM codec CENTRAL SYSTEM UNIT: The CSU consists of the following components. CONNECTION MODULE main task to perform low-level blue tooth communication DATA ANALYSIS MODULE performs the analysis of the raw sensor data in order to obtain information about operators physiological condition DATA LOGGER MODULE provides support for storing the monitored data. VISULAIZATION MODULE provides user interface for the supervisors CSU FEATURES: The central system unit has the following features. Accessverification System maintenance Connection management Data processing Visualization Data recording AFFECTIVE COMPUTING The process of making emotional computers with sensing abilities is known as affective computing. Steps include:- Giving sensing abilities Detecting human emotions Respond properly ASPECTS OF AFFECTIVE COMPUTING There are two aspects of affective computing: giving the computer the ability to detect emotions and giving the computer the ability to express emotions. Not only are emotions crucial for rational decision making, but emotion detection is an important step to an adaptive computer system. An adaptive, smart computer system has been driving efforts to detect a persons emotional state. An important element of incorporating emotion into computing is for productivity for a computer user. By matching a persons emotional state and the context of the expressed emotion, over a period of time the persons personality is being exhibited. Therefore, by giving the computer a longitudinal understanding of the emotional state of its user, the computer could adapt a working style which fits with its users personality. The result of this collaboration could increase productivity for the user. INPUTS CONSIDERED Heart pulse rate Facial expressions Eye-brows and mouth lines primarily Eye movements As a pointing device Also to determine the emotion Voice METHODS: 1. AFFECT DETECTION: One way of gaining information from a user non-intrusively is by video. Cameras have been used to detect a persons emotional state. The basic block diagram of the facial expression detection is shown below. THEORY ON FACIAL EXPRESSION Based on a facial expression work, there is a correlation between a persons emotional state and a persons physiological measurements. Paul Ekman, a scientist performed an experiment which involved participants attached to devices to record certain measurements including pulse, galvanic skin response (GSR), temperature, somatic movement and blood pressure. He then recorded the measurements as the participants were instructed to mimic facial expressions which corresponded to the six basic emotions. He defined the six basic emotions as anger, fear, sadness, disgust, joy and surprise. Thus from this experiment it was determined how physiological measures could be used to distinguish various emotional states. The measures taken were GSR, heart rate, skin temperature and general somatic activity (GSA). These data were then subject to two analyses. For the first analysis,a multidimensional scaling(MDS) procedure was used to determine the dimensionality of the data. Thus it can be concluded that most of the information is extracted from the position of the eye-brows. Detection Geometric facial data extraction Basic emotion-specified facial expression 1 2 3 4 5 6 disgust fear joy surprise Sadness anger 2. MAGIC POINTING: Magic Pointing stands for MANUAL AND GAZE INPUT CASCADED (MAGIC) POINTING. This work explores a new direction in utilizing eye gaze for computer input. Gaze tracking has long been considered as an alternative or potentially superior pointing method for computer input. It is believed that many fundamental limitations exist with traditional gaze pointing. In particular, it is unnatural to overload a perceptual channel such as vision with a motor control task. Therefore an alternative approach of dubbed MAGIC (Manual And Gaze Input Cascaded) pointing is proposed. With such an approach, pointing appears to the user to be a manual task, used for fine manipulation and selection. However, a large portion of the cursor movement is eliminated by warping the cursor to the eye gaze area, which encompasses the target. Two specific MAGIC pointing techniques are Conservative magic pointing and Liberal magic pointing. The pros and cons of the two techniques are discussed in light of both performance data and subjective reports. IMPLEMENTATION The MAGIC pointing program takes data from both the manual input device (of any type, such as a mouse) and the eye tracking system running either on the same machine or on another machine connected via serial port. Raw data from an eye tracker can not be directly used for gaze-based interaction, due to noise from image processing, eye movement jitters, and samples taken during saccade (ballistic eye movement) periods. Therefore filters are used. The goal of filter design in general is to make the best compromise between preserving signal bandwidth and eliminating unwanted noise. In the case of eye tracking, eye information relevant to interaction lies in the fixations. The key is to select fixation points with minimal delay. Samples collected during a saccade are unwanted and should be avoided. In designing the algorithm for picking points of fixation, the tracking system speed (30 Hz) is considered, and that the MAGIC pointing techniques utilize gaze information only once for each new target, probably immediately after a saccade. The filtering algorithm was designed to pick a fixation with minimum delay by means of selecting two adjacent points over two samples. Advantages of magic pointing: The both the liberal and the conservative MAGIC pointing techniques offer the following potential advantages: Reduction of manual stress and fatigue, since the cross screen long-distance cursor movement is eliminated from manual control. Practical accuracy level. In comparison to traditional pure gaze pointing whose accuracy is pointing fundamentally limited by the nature of eye movement, the MAGIC pointing techniques let the hand complete the task, so they can be as accurate as any other manual input techniques. . A more natural mental model for the user. The user does not have to be aware of the role of the eye gaze. To the user, pointing continues to be a manual task, with a cursor conveniently appearing where it needs to be. Speed. Since the need for large magnitude pointing operations is less than with pure manual cursor control, it is possible that MAGIC pointing will be faster than pure manual pointing. Improved subjective speed and ease-of-use. Since the manual pointing amplitude is smaller, the user may perceive the MAGIC pointing system to operate faster and more pleasantly than pure manual control, even if it operates at the same speed or more slowly. Problems related to magic pointing: In addition to problems with todays eye tracking systems, such as delay, error, and inconvenience, there may also be many potential human factor disadvantages to the MAGIC pointing techniques we have proposed, including the following: 1. With the more liberal MAGIC pointing technique, the cursor warping can be overactive at times, since the cursor moves to the new gaze location whenever the eye gaze moves more than a set distance (e.g., 120 pixels) away from the cursor. This could be particularly distracting when the user is trying to read. It is possible to introduce additional constraint according to the context. For example, when the users eye appears to follow a text reading pattern, MAGIC pointing can be automatically suppressed. 2. With the more conservative MAGIC pointing technique, the uncertainty of the exact location at which the cursor might appear may force the user, especially a novice, to adopt a cumbersome strategy: take a touch (use the manual input device to activate the cursor), wait (for the cursor to appear), and move (the cursor to the target manually). Such a strategy may prolong the target acquisition time. The user may have to learn a novel hand-eye coordination pattern to be efficient with this technique. Gaze position reported by eye tracker Eye tracking boundary with 95% confidence True target will be within the circle with 95% probability The cursor is warped to the boundary of the gaze area, along the initial actuation vector Previous cursor position, far from target Initial manual actuation vector 3. With pure manual pointing techniques, the user, knowing the current cursor location, could conceivably perform his motor acts in parallel to visual search. Motor action may start as soon as the users gaze settles on a target. With MAGIC pointing techniques, the motor action computation (decision) cannot start until the cursor appears. This may negate the time saving gained from the MAGIC pointing techniques reduction of movement amplitude. Clearly, experimental (implementation and empirical) work is needed to validate, refine, or invent alternative MAGIC pointing techniques. SUITOR SUITOR stands for Simple User Interface Tracker. Computers would have been much more powerful, had they gained perceptual and sensory abilities of the living beings on the earth. What needs to be developed is an intimate relationship between the computer and the humans. And the Simple User Interest Tracker (SUITOR) is a revolutionary approach in this direction. By observing the Webpage a netizen is browsing, the SUITOR can help by fetching more information at his to desktop. By simply noticing where the users eyes focus on the computer screen, the SUITOR can be more precise in determining his topic of interest. It can even deliver relevant information to a handheld device. The success lies in how much the suitor can be intimate the user. A cue to exploit nonverbal cues to create more effective user interfaces c is gaze-the direction in which a person is looking. A new technique for tracking a persons eyes has been created and this gaze-tracking technology has been incorporated into two prototypes. One, called SUITOR (Simple User Interest Tracker), fills a scrolling ticker on a computer screen with information related to the users current task. SUITOR knows where the user is looking, what applications he/she is running, and what Web pages the user may be browsing. For example, If a Web page about IBM, is being read for instance and the system presents the latest stock price or business news stories that could affect IBM. If the headline off the ticker is read, it pops up the story in a browser window. If the story is also read then , it adds related stories to the ticker. Thats the whole idea of an attentive system-one that attends to what you are doing, typing, reading, so that it can attend to your information needs. EMOTION MOUSE: One goal of human computer interaction (HCI) is to make an adaptive, smart computer system. A non-invasive way to obtain information about a person is through touch. People use their computers to obtain, store and manipulate data using their computer. In order to start creating smart computers, the computer must start gaining information about the user. The proposed method for gaining user information through touch is via a computer input device, the mouse. From the physiological data obtained from the user, an emotional state may be determined which would then be related to the task the user is currently doing on the computer. Over a period of time, a user model will be built in order to gain a sense of the users personality. The scope of the project is to have the computer adapt to the user in order to create a better working environment where the user is more productive. . One obvious place to put sensors is on the mouse. Through observing normal computer usage (creating and editing documents and surfing the web),people spend approximately 1/3 of their total computer time touching their input device. Because of the incredible amount of time spent touching an input device, the possibility of detecting emotion through touch can be explored. Mouse is embedded with sensors that can sense the physiological attributes like Temperature Body pressure Pulse rate Touching style etc. The computer determines the users emotional states from these inputs. BLUE EYE EMOTIONAL MOUSE sensors in the mouse ,sense the physiological attributes which are correlated to emotions using correlation model -by simply touching the mouse ,the computer will be able to determine a persons emotional state. BLUE EYE enabled TELEVISION could become active when the user makes an eye contact incorporated. 5. SPEECH RECOGNITION: It is important to consider the environment in which the speech recognition system has to work. The grammar used by the speaker, noise level, noise type, position of the microphone, and speed and manner of the users speech are some factors that may affect the quality of speech recognition . Artificial intelligence comes into place where an automatic call-handling system is used without employing any telephone operator. THE TECHNOLOGY: Artificial intelligence (AI) involves two basic ideas. First, it involves studying the thought processes of human beings. Second, it deals with representing those processes via machines (like computers, robots, etc). AI is behavior of a machine, which, if performed by a human being, would be called intelligent. It makes machines smarter and more useful, and is less Expensive than natural intelligence. Natural language processing (NLP) refers to artificial intelligence methods of communicating with a computer in a natural language like English. The main objective of a NLP program is to understand input and initiate action. The input words are scanned and matched against internally stored known words. Identification of a key word causes some action to be taken. In this way, one can communicate with the computer in ones language. No special commands or computer language are required. There is no need to enter programs in a special language for creating software. The user speaks to the computer through a microphone, which, in used; a simple system may contain a minimum of three filters. The more the number of filters used, the higher the probability of accurate recognition. Presently, switched capacitor digital filters are used because these can be custom-built in integrated circuit form. These are smaller and cheaper than active filters using operational amplifiers. The filter output is then fed to the ADC to translate the analogue signal into digital word. The ADC samples the filter outputs many times a second. Each sample represents different amplitudes of the signal .Evenly spaced vertical lines represent the amplitude of the audio filter output at the instant of sampling. Each value is then converted to a binary number proportional to the amplitude of the sample. A central processor unit (CPU) controls the input circuits that are fed by the ADCS. A large RAM (random access memory) stores all the digital values in a buffer area. The pictures represent the basic schemes of the speech recognition process. This digital information, representing the spoken word, is now accessed by the CPU to process it further. The normal speech has a frequency range of 200 Hz to 7 kHz. Recognizing a telephone call is more difficult as it has bandwidth limitation of 300 Hz to3.3 kHz. As explained earlier, the spoken words are processed by the filters and ADCs. The binary representation of each of these words becomes a template or standard, against which the future words are compared. These templates are stored in the memory. Once the storing process is completed, the system can go into its active mode and is capable of identifying spoken words. As each word is spoken, it is converted into binary equivalent and stored in RAM. The computer then starts searching and compares the binary input pattern with the templates. t is to be noted that even if the same speaker talks the same text, there are always slight variations in amplitude or loudness of the signal, pitch, frequency difference, time gap, etc. Due to this reason, there is never a perfect match between the template and binary input word. The pattern matching process therefore uses statistical techniques and is designed to look for the best fit. The values of binary input words are subtracted from the corresponding values in the templates. If both the values are same, the difference is zero and there is perfect match. If not, the subtraction produces some difference or error. The smaller the error, the better is the match. When the best match occurs, the word is identified and displayed on the screen or used in some other manner. The search process takes a considerable amount of time, as the CPU has to make many comparisons before recognition occurs. This necessitates use of very high-speed processors. A large RAM is also required as even though a spoken word may last only a few hundred milliseconds, but the same is translated into many thousands of digital words. It is important to note that alignment of words and templates are to be matched correctly in time, before computing the similarity score. This process, termed as dynamic time warping, recognizes that different speakers pronounce the same words at different speeds as well as elongate different parts of the same word. This is important for the Speaker-independent recognizers. APPLICATIONS OF SPEECH RECOGNITION One of the main benefits of speech recognition system is that it lets user do other works simultaneously. The user can concentrate on observation and manual operations, and still control the machinery by voice input commands. Another major application of speech processing is in military operations. Voice control of weapons is an example. With reliable speech recognition equipment, pilots can give commands and information to the computers by simply speaking into their microphones-they dont have to use their hands for this purpose. Another good example is a radiologist scanning hundreds of X-rays, ultrasonograms, CT scans and simultaneously dictating conclusions to a speech recognition system connected to word processors. The radiologist can focus his attention on the images rather than writing the text. Voice recognition could also be used on computers for making airline and hotel reservations. A user requires simply to state his needs, to make reservation, cancel a reservation, or ma ke enquiries about schedule. 6. EYE TRACKER: Eye tracker is a device which tracks the movement of eye. This system is much more compact and reliable. Available commercial systems, rely on a single light source that is positioned either off the camera axis, or on-axis. Illumination from an off-axis source (or ambient illumination) generates a dark pupil image. When the light source is placed on-axis with the camera optical axis, the camera is able to detect the light reflected from the interior of the eye, and the image of the pupil appears bright. This effect is often seen as the red-eye in flash photographs when the flash is close to the camera lens. The Almaden system of eye tracking uses two near infrared (IR) time multiplexed light sources, composed of two sets of IR LEDs, which were synchronized with the camera frame rate. One light source is placed very close to the cameras optical axis and is synchronized with the even frames. Odd frames are synchronized with the second light source, positioned off axis. The two light sources are calibrated to provide approximately equivalent whole-scene illumination. Pupil detection is realized by means of subtracting the dark pupil image from the bright pupil image. After thresholding the difference, the largest connected component is identified as the pupil. This technique significantly increases the robustness and reliability of the eye tracking system. The Almaden eye tracker is shown in the figure. The above picture an ON AXIS infrared illumination The figure explains the OFF AXIS infrared illumination. APPLICATIONS 1. Surveillance systems: A large retailers have implemented surveillance systems that record and interpret customer movements, using BlueEye software. BlueEye software makes sense of what the cameras see to answer key questions for retailers, including, How many shoppers ignored a promotion? How many stopped? How long did they stay? Did their faces register boredom or delight? How many reached for the item and put it in their shopping carts? Blue Eye works by tracking pupil, eyebrow and mouth movement. When monitoring pupils, the system uses a camera and two infrared light sources placed inside the product display. One light source is aligned with the cameras focus; the other is slightly off axis. When the eye looks into the camera-aligned light, the pupil appears bright to the sensor, and the software registers the customers attention. This is way it captures the persons income and buying preferences. BlueEye is actively been incorporated in some of the leading retail outlets. 2. Automobile industry Blue Eye can be applied in the automobile industry. By simply touching a computer input device such as a mouse, the computer system is designed to be able to determine a persons emotional state. For cars, it could be useful to help with critical decisions like: I know you want to get into the fast lane, but Im afraid I cant do that. You too upset right now and therefore assist in driving safely. 3. Video games We could see its use in video games where, it could give individual challenges to customers playing video games. Typically targeting commercial business. The integration of Childrens toys, technologies and computers is enabling new play experiences that were not commercially feasible until recently. The Intel Play QX3 Computer Microscope, the Me2Cam with Fun Fair, and the Computer Sound Morpher are commercially available smart toy products developed by the Intel Smart Toy Lab in. One theme that is common across these PC-connected toys is that users interact with them using a combination of visual, audible and tactile input output modalities. The presentation will provide an overview of the interaction design of these products and pose some unique challenges faced by designers and engineers of such experiences targeted at novice computer users, namely young children. 4. An alternate to keyboard The familiar and useful come from things we recognize. Many of our favorite things appearance communicate their use; they show the change in their value though patina. As technologists we are now poised to imagine a world where computing objects communicate with us in-situ; where we are. We use our looks, feelings, and actions to give the computer the experience it needs to work with us. Keyboards and mice will not continue to dominate computer user interfaces. Keyboard input will be replaced in large measure by systems that know what we want and require less explicit communication. Sensors are gaining fidelity and ubiquity to record presence and actions; sensors will notice when we enter a space, sit down, lie down, Pump iron, etc. Pervasive infrastructure is recording it. 5. A better future scenario Current interfaces between computers and humans can present information vividly, but have no sense of whether that information is ever Viewed or understood. In contrast, new real-time computer vision techniques for perceiving people allows us to create Face-responsive Displays and Perceptive Environments, which ca

Friday, October 25, 2019

Strong Chinese Women in Film Essay -- Character Analysis

1. Introduction In Confucian thought, women had their purpose beside their men or within their households as mothers. However, the legend of Hua Mulan precedes Confucius. Mulan’s story had inspired early Chinese Feminists such as Qiu Ji to go against the society built to keep her space as a woman separate from the rest of the world. In modern times, Fa Mulan (from Disney) added more diversity to the usual Disney Princesses and gave westerners an image of Chinese culture. The Disney film about Fa Mulan and the live action film about Hua Mulan by Jingle Ma ultimately chronicle the journey of Mulan and her service in the military but the films will have significant differences because of the different perspectives telling the stories. The changes of the female roles in China in the 21st century have their starting point with the story of Mulan because of her positive role in female identity later on. How Mulan changed the stigma about women over time may not have helped. Although Mulan is a legend, legends tend to shape some fields of thought in society. Changes in female structures in China took many centuries but I believe Mulan’s presence had an irreplaceable impact on the women in Chinese society. I define Confucianism in the female role as follows: A woman’s duties pertain to her husband, the parents of her husband and the children birthed between she and her husband. A woman’s duties to her husband include but are not limited to, keeping him happy and full with good meals. Her duties to her husband’s family includes, but are not limited to, keeping his parents happy and adjusting to the rules of her governing mother-in-law and providing grandparents with grandchildren. A woman’s duties to birth children include, but are not... ... to the Imperial City to warm her old friends of the imminent attack on the emperor, everyone ignored her. Hua Mulan did not face this same problem in the live action movie. When her comrades discovered her, they decided to keep their discovery to themselves instead of sending Mulan to her death. The only reason Fa Mulan remained alive in the movie was her heroic actions before her superior discovered her. Works Cited 5. Confucianism Since the core of Confucianism is the belief 6. Conclusion References: 1. http://ww.chinapage.com/mulan.html 2. â€Å"Ode To Mulan† http://www.yellowbridge.com/onlinelit/mulan.php 3. â€Å"Mulan in Legends† http://www.ourorient.com/mulan-in-legends.htm 4. DVD Disney’s Mulan 5. DVD Jingle Ma’s Mulan 6. Lan, Fen. "The Female Individual and the Empire." Duke University. http://www.jstor.org/stable/pdfplus/4125407.pdf.

Thursday, October 24, 2019

Nutritional Assessment Essay

I have read and understand the plagiarism policy as outlined in the syllabus and the sections in the IWU Catalog relating to the IWU Honesty/Cheating Policy. By affixing this statement to the second page of my paper, I certify that I have not cheated or plagiarized in the process of completing this assignment. I also certify that the work submitted is original work specific for this course and to my program. If it is found that cheating and/or plagiarism did take place in the writing of this paper, I understand the possible consequences of the act/s, which could include expulsion from Indiana Wesleyan University. Kristine Davis June 9, 2013 NameDate JW is an 86 year old man who lives at home with his wife of 31 years. He is in fair-good health. He has a history of prostate cancer, angina, and coronary artery disease. He has had 5 stents put in his heart over the last 10 year. He recovered well from the surgeries. He has always been athletic and fit. He played racquet ball and soft ball until he was 68 years old. He had his first Angina attack at 68. He had radiation seen implants in 2010, which successfully eliminated the prostate cancer. His vital signs are as follows: 130/82 blood pressure, 72 pulse, 20 respirations, 98. 4 oral temperature, and 96% oxygen saturation. JW weighs 178 pounds and is 5 feet 11 inch in height. His BMI (Body Mass Index) is 24. 7. JW is alert and oriented. He seems very sharp for his age. He lives with his wife and 2 dogs. He attends to his daily living needs without assistance. He has a routine of preparing his medications and meals daily. His current medications consist of a multivitamin, Omega Fatty Acids, Asprin, Nitroglycerin, Coumadin, and stool softner. JW’s nutritional assessment is as follows: he maintains a regular diet, eating 3 meals a day. JW wears partial dentures, but does not require any assistance with feeding himself. He has a balanced diet with all essential food groups. He said that he drinks 8 glasses of water daily as instructed by his physician. He also enjoys a glass of wine every night. He has had a 3-5 pound weight loss in the last 3 months. He said he changed his diet regime to frozen dinners because his wife had surgery 3 months ago. She was unable to make his meals on a regular basis until recently. JW is ambulatory and self-sufficient. He said his wife keeps him active and on his toes. He enjoys going to dinner once per week. He admits that he is happy that his wife is recovered from her surgery and back to cooking for him. He tries to stay active and assist her with house work and folding laundry. JW lost his dog of 14 years, two months ago. She had to be put to sleep due to cancer. He said the loss of his dog had a significant impact on his emotional state, and his daily routine. He said he would walk with his dog, â€Å"Lucy†, every morning and night if the weather permitted. After several weeks of grieving, his wife surprised him with a new puppy. JW feels that this puppy has brought back a sense of the companionship and joy that he lost when he lost his dog. He is back to his daily walking with the puppy. JW seems well adjusted to the new puppy. There are no psychological concerns noted. His cognitive functioning seems up to par. He spends several hours a day reading and working on crossword puzzles in order to maintain his cognitive functioning. JW’s skin is dry and warm. His mucous membranes are moist and pink. There are no visible lesions or pain noted. He does not report any difficulty chewing or swallowing. He said he moves his bowels 1-2 times daily without discomfort. JW’s MNA (Mini Nutritional Assessment) reveals that he is at risk for malnutrition. His score was 11. He was informed of the importance of consuming adequate portions of the foods from the basic food groups including fruits, vegetables, grains, dairy, and proteins. He knows that he must avoid the unhealthy fats and cholesterol in his diet. However, he was encouraged to eat a heart healthy diet including more vegetables and fruits. JW will continue to drink the 8 glasses of water per day and take daily walks for exercise. He was encouraged ask his physician if the evening glass of wine was permitted, especially considering his medication regime. JW’s goal is to be at adequate weight and BMI for his size, as well as maintain good nutritional status. He continues to be monitored by his primary physician, Cardiologist, Oncologist, and a nutritionist quarterly. He maintains yearly dental exams.

Wednesday, October 23, 2019

Influencs of Western Culture on Indian Youth Essay

Western culture is neither homogeneous nor unchanging. As with all other cultures it has evolved and gradually changed over time. All generalities about it have their exceptions at some time and place. Globalism has spread western ideas so widely that almost all modern countries or cultures are to some extent influenced by aspects of western culture which they have absorbed. In the later 20th to early 21st century, with the advent of increasing globalism, it has become more difficult to determine which individuals fit into which category. How there is head and tail for a coin, there is both positive and negative impact of western culture on the world and especially on todays young generation , On one side we enjoy our so-called rich culture and really admire it. The ways of living has been greatly enhanced by the western culture which is good for success and growth of a country and helpful for it in heading towards super success. But on the other side; this culture mainly adopted by us has given rise to Individualization. Individualization has broken up many cultural systems, paving way for the youth to fall prey to drug addictionand many other ill practices. This stage is the most vulnerable period of life where the youth need guidance, counseling, education and care by parents. Culture† and â€Å"Tradition† are more significant in a country like India which has always been cherishing its rich culture and heritage and it’s quite well known for it worldwide. But these things are now just on paper and are slowly losing their sheen. Why? The younger generation are the representatives of India in a true sense of the word. We are the sole cherishers of India’s pride and its heritage which actually lies in its culture, its diversity, its uniqueness. In such a scenario, where the point of a rich cultured country like India is facing the problem of losing its culture, are we, the youth; the Indian youth not Actually Responsible For This? Are we not putting our own self image, our self respect, our mother India’s pride at stake by doing so? Just think about it my dear friends. I would suggest, There is no problem as such when we follow the western culture to some extent. The problem is we are forgetting our culture to a greater extent. Why should we do so? as 21st century youth doesn’t mean forgetting the motherland and following or in short adopting western lifestyle in totality. Every culture has its own pros and cons. We individuals should be strong enough to take the good and throw off the bad. We are easily influenced by western culture. Right from our clothing, till the music, the films, our attitude, our lifestyle, in short every aspect of our life has totally changed. I just want to say that â€Å"Change doesn’t happen on its own; it’s we who bring about the change. But by this change, our mother India has lost its sheen and beauty; its place; its uniqueness in the world. The things mentioned above does not only imply to India. There are many countries in the world where todays youths have adopted westernization. For eg in many countries like Japan , Bangladesh , etc are greatly prone to westernization. At the end I would just like to convey a message that- Almost all the countries in the world have become independent and we the younger generation are the representatives of the future . o we must realize that true beauty of a country lies in its culture, its heritage and every country has its uniquiness. So we must understand thae our country must be our own. And as for india many great western people like Mark Twain  have said- India is the cradle of human race, the birth place of human speech, the mother of history, the grandmother of legend and greatgrandmother of tradition. Our most valuable and instructive materials in the history of man are treasure up in India only.